Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
European Journal of Human Genetics ; 31(Supplement 1):708, 2023.
Article in English | EMBASE | ID: covidwho-20233214

ABSTRACT

Background/Objectives: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease (COVID-19) enters the lung tissue through exocytosis, leading to the release of a large amount of pro-inflammatory cytokines called 'cytokine storm'. The aim was to provide more insight into relationship between plasma cytokines profile and fatal outcome of COVID-19. Method(s): Plasma cytokines (IL-17F,GM-CSF,IFNg,IL-10,CCL20/ MIP3a,IL-12P70,IL-13, IL-15,IL-17A,IL-22,IL-9,IL-1b,IL-33,IL-2,IL-21,IL-4,IL-23,IL-5,IL-6,IL-17E/IL-25,IL-27,IL-31,TNFa,TNFb,IL-28A) were detected in 30 patients with severe COVID-19 by a Luminex assay system with Milliplex Human Th17 Magnetic Premix 25 Plex Kit (HT17MG-14K-PX-25, Merk-Millipore, USA) according to the instructions. Patients were followed up for 30 days since admission to intensive care. 18 patients died and 12 patients survived during the period of observation. The control group comprised 10 individuals who had never been diagnosed with COVID-19. Result(s): IL-10 and CCL20/MIP3a plasma levels were elevated in non-survivors patients with COVID-19 compared to controls (p = 0.0027, p = 0.012, respectively). IL-15, IL-6, IL-27 plasma levels were higher in survivors with COVID-19 compared to controls (p = 0.049, p = 0.026, p = 0.00032, respectively). Interestingly, IL-15, IL-27 plasma levels were increased in non-survivors with COVID-19 compared to controls and survivors with severe COVID-19 (IL-15: p = 0.00098, p = 0.00014, respectively;IL-27: p = 0.011, p < 0.0001, respectively). Receiver operating characteristic (ROC) analysis has been conducted for IL-15 and IL-27. Cut-off value was estimated as 25.50 pg/ml for IL-15 and 1.51 pg/ml for IL-27. Conclusion(s): Our study demonstrated a more pronounced immune response in non-surviving patients with severe COVID-19. IL-15, IL-27 could be considered as a sensitive biomarker of the fatal outcome from COVID-19.

2.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):335, 2023.
Article in English | EMBASE | ID: covidwho-2296290

ABSTRACT

Background: Infections with SARS-CoV- 2 cause the coronavirus disease 2019 (COVID-19) pandemic. Alterations in immune cells of COVID-19 patients may predict the subsequent severity of disease. The changes in composition of immune cells in COVID-19 patients include lymphopenia, lower neutrophil to lymphocyte-ratios and an eosinopenia in about 50 to 80% of hospitalized patients. Eosinophils and neutrophils can interact with T cells via immune checkpoints receptors such as programmed death (PD)-1 on T cells and its counterpart PD-ligand 1 (PD-L1) on eosinophils or neutrophils. There are only limited studies on PD-1 and PD-L1 expressions in viral infections, we aimed to elucidate the interplay of T cells and other peripheral cells by analysing the immune checkpoints PD-1 and PD-L1 in expression during COVID-19. Method(s): Using flow cytometry, we have now analysed the immune checkpoint receptor expressions on whole blood cells from a total of 38 COVID-19 patients. The patient cohort comprises all ages and both sexes with the disease severity ranging from mild, moderate to severe, with ~10% mortality. We have further been investigating 21 biomarkers (G-CSF, GM-CSF, IFN-gamma, TGF-beta1, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-23, IL-33, IP-10, MCP-1, MIP-1beta, TNF-alpha, and YKL-40) in plasma on a cohort of 76 COVID-19 patients using the MesoScale Multiplex Assay platform, with 48 healthy controls. Result(s): PD-L1 expression on eosinophils was significantly lower in COVID-19 patients in initial stages of infection, relative to healthy controls. There was an inverse relationship between disease progression and the expression of PD-1 on CD8+ T cells. These data suggests that analysis of PD-L1- PD1 cell networks in immune cells of EDTA blood of COVID-19 patients can predict disease outcomes. While most detectable biomarkers are strongly increased in COVID samples overall compared to healthy controls, the more severe the disease the higher the blood biomarker concentration. Conclusion(s): Taken together, the analysis of PD-L1- PD1 cell networks in immune cells together with plasma biomarkers of COVID-19 patients can predict disease outcomes.

3.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2268922

ABSTRACT

As hyperbaric oxygen (HBO) has been shown to mitigate the COVID-19 symptoms, we were interested in studying whether HBO exposure affects expression of viral entry genes and innate immune genes in the air-liquid interface (ALI)-cultured human bronchial epithelial cells (HBECs) derived from normal individuals (NHBECs) and age-matched COPD patients (DHBECs), which were cultured under normoxia or daily exposure of 40-min hyperbaric oxygen (HBO) with 100% O2 at 2.5 ATA for 28 days in total. We found for the first time that HBO exposure differentially regulated mucociliary differentiation of HBECs by respectively decreasing and increasing expression of CGRP, MUC5AC, FOXJ1, NOTCH3 and HEYL in NHBECs and DHBECs, and respectively decreased and increased FOXO1 expression whereas increased and decreased NFE2L2 and NFKB1 expression in NHBECs and DHBECs, in association with respectively decreased and increased expression the SARS-CoV-2 entry genes ACE2 and 2 TMPRSS2 and the tight junction protein genes TJP1 and TJP2, and in association with respectively increased and decreased expression of the cell growth and inflammatory transcription factors SRF, c-FOS and TP63, as well as the TLR pathway genes TLR3, AKT1, IL-1B, IL-5, IL-6, IL-33, IRAK4 and NFKBIA in NHBECs and DHBECs. (Figure Presented).

4.
Pakistan Journal of Medical and Health Sciences ; 16(7):668-671, 2022.
Article in English | EMBASE | ID: covidwho-2067744

ABSTRACT

The review is devoted to investigate cardiovascular biomarkers in patients with SARS-CoV-2 associated with a high risk of complications and death. The article provides information on the main cardiovascular biomarkers and pro-inflammatory cytokines in relations to the processes of decompensation in patients with chronic heart failure complicated by ARVI, including the SARS-CoV-2.

5.
Biomedicines ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: covidwho-1952993

ABSTRACT

BACKGROUND: Interleukin-33 (IL-33) is an important cytokine in the pathophysiology of atopic dermatitis (AD) and in the progression of COVID-19. Angiotensin converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is expressed in epidermal keratinocytes. Whether IL-33 could regulate the expression of ACE2 mechanistically in keratinocytes warrants investigation. OBJECTIVE: We questioned whether the ACE2 expression is increased in AD skin. We also questioned whether ACE2 is expressed in keratinocytes; if so, would its expression be enhanced mechanistically by IL-33. METHODS: We measured and compared the expression of ACE2 in skin from patients with AD, patients with psoriasis, and healthy controls using immunohistochemistry. Flow cytometry, immunofluorescent exam, and quantitative RT-PCR were used for measuring the ACE2 expression in cultured keratinocytes treated with IL-33 and IL-17. Blocking antibodies were utilized to study the intracellular signaling pathways governing the ACE2 expression using cytokines. RESULTS: The results showed that the ACE2 expression is increased in AD compared with that in healthy skin and psoriasis. In primary epidermal keratinocytes, ACE2 is constitutively expressed. IL-33 induces a time-dependent increase in ACE2 expression in cultured keratinocytes through quantitative PCR, flow cytometry, and immunofluorescent examinations. Furthermore, pretreatment of an ERK inhibitor, but not a STAT3 inhibitor, eliminated the increases in ACE2 by IL-33 in keratinocytes, indicating that IL-33 enhances ACE2 expression through ERK on epidermal keratinocytes. CONCLUSION: This is the first study to reveal that IL-33 enhances ACE2 expression on keratinocytes via ERK. Although further mechanistic studies are required, the increased ACE2 expression in IL-33 might have a biological implication on the transmission of SARS-CoV-2 in patients with AD.

6.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927706

ABSTRACT

Rationale We have previously reported blocking the IL-25 receptor (IL-17RB) prevented viral increased allergic airways inflammation and this was associated with reduced lung viral load. To investigate IL-25 regulation of airway anti-viral immunity we hypothesised that IL-25 directly inhibits airway epithelial cell (AEC) type I/III interferon expression and antibody blockade of IL-25 in vivo boosts lung interferon expression and reduces lung viral load in parallel with reduced type 2 airway inflammation. Methods In vitro Immunofluorescence was used to visualise epithelial IL-25 and IL- 17RB proteins in endobronchial biopsies from patients with asthma and healthy subjects and in AEC differentiated at ALI. AEC from n = 14 donors with asthma were differentiated at the air-liquid interface (ALI) and infected with RV-A1, MOI=0.1. A subset of AECs was treated with anti-IL-25 mAb (LNR125) before infecting with RV-A1 or human coronavirus 229E. Differentiated AEC from healthy donors were treated with recombinant IL-25 protein and infected with RV-A1. Nanostring immune transcriptomic data expressed as digital mRNA counts for exact copy number or was expressed as log2 fold change ratio against -log10 Bejamini-Yekutieli-corrected p-values. In vivo 6- 8-week-old, BALB/c mice sensitised and intranasally challenged daily for 3 days with ovalbumin to induced allergic airways disease. A single subcutaneous injection of 250 μg LNR125 was administered during ovalbumin challenge. Mice were then infected i.n. with RV-A1, 6 hours after final allergen challenge. On day 1 and day 7 post-infection, BAL were collected, lung lobe tissue was collected for viral RNA and cytokine expression. Results IL-25 and IL-17RB were constitutively expressed at the apical surface of airway epithelium in biopsies and AEC cultures. RV infection increased IL-25 expression by AEC from asthmatic donors. LNR125 treatment reduced IL-25 mRNA and significantly increased RV induced IFN-β a and IFN-λ protein expression and this was confirmed by Nanostring transcriptomic analyses which also identified down-regulated type-2 immune genes CCL26 (eotaxin 3) and IL1RL1(IL-33 receptor). LN125 treatment also increased IFN-λ expression by 229E-infected differentiated AECs. IL-25 treatment increased viral load associated with 50% reduced expression of IFN-β and CXCL10 and 75% reduced IFN-λ. Allergen challenged, RV-infected mice treated with LNR125 had significantly increased BAL IFN-β protein and 60% reduction in lung viral load associated with reduced IL-25, IL-4, IL-5 and IL-13 BAL proteins compared to controls. Conclusion IL-25-induced inflammation combined with suppression of AEC anti-viral immunity identify IL-25 as a central mediator of viral asthma exacerbations and therefore a target for mAb-based treatment.

7.
Inflamm Res ; 71(7-8): 923-947, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1905972

ABSTRACT

A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin-1 , Interleukins , Pandemics , SARS-CoV-2
8.
J Clin Med ; 10(18)2021 Sep 12.
Article in English | MEDLINE | ID: covidwho-1409871

ABSTRACT

(1) Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most studied rhinological disorders. Modifications of the respiratory nasal mucosa in COVID-19 patients are so far unknown. This paper presents a comparative morphological characterization of the respiratory nasal mucosa in CRSwNP versus COVID-19 and tissue interleukin (IL)-33 concentration. (2) Methods: We analyzed CRSwNP and COVID-19 samples through histopathology, scanning and transmission electron microscopy and performed proteomic determination of IL-33. (3) Results: Histopathologically, stromal edema (p < 0.0001) and basal membrane thickening (p = 0.0768) were found more frequently in CRSwNP than in COVID-19. Inflammatory infiltrate was mainly eosinophil-dominant in CRSwNP and lymphocyte-dominant in COVID-19 (p = 0.3666). A viral cytopathic effect was identified in COVID-19. Scanning electron microscopy detected biofilms only in CRSwNP, while most COVID-19 samples showed microbial aggregates (p = 0.0148) and immune cells (p = 0.1452). Transmission electron microscopy of CRSwNP samples identified biofilms, mucous cell hyperplasia (p = 0.0011), eosinophils, fibrocytes, mastocytes, and collagen fibers. Extracellular suggestive structures for SARS-CoV-2 and multiple Golgi apparatus in epithelial cells were detected in COVID-19 samples. The tissue IL-33 concentration in CRSwNP (210.0 pg/7 µg total protein) was higher than in COVID-19 (52.77 pg/7 µg total protein) (p < 0.0001), also suggesting a different inflammatory pattern. (4) Conclusions: The inflammatory pattern is different in each of these disorders. Results suggested the presence of nasal dysbiosis in both conditions, which could be a determining factor in CRSwNP and a secondary factor in COVID-19.

9.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

10.
Biomark Med ; 14(17): 1619-1629, 2020 12.
Article in English | MEDLINE | ID: covidwho-993122

ABSTRACT

Aim: The authors studied the role of soluble ST2 (sST2) in COVID-19 and its relationship with inflammatory status and disease severity. Materials & methods: Serum levels of sST2 and interleukin (IL)-33, C-reactive protein (CRP), serum amyloid protein (SAA), IL-6 and procalcitonin (PCT), and T lymphocyte subsets from 80 subjects diagnosed with COVID-19 including 36 mild, 41 severe and three asymptomatic cases were tested. Results: Serum sST2 levels were significantly increased in COVID-19 patients, which were positively correlated with CRP, but negatively correlated with CD4+ and CD8+ T lymphocyte counts. Serum sST2 levels in nonsurviving severe cases were persistently high during disease progression. Conclusion: Serum sST2 level test is helpful for reflecting inflammatory status and illness severity of COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/blood , Interleukin-1 Receptor-Like 1 Protein/blood , SARS-CoV-2/metabolism , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/metabolism , Female , Humans , Male , Middle Aged , Procalcitonin/blood , Serum Amyloid A Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL